Phage display selection of P1 mutants of BPTI directed against five different serine proteinases.

نویسندگان

  • L Kiczak
  • K Koscielska
  • J Otlewski
  • M Czerwinski
  • M Dadlez
چکیده

The P1 position of protein inhibitors and oligopeptide substrates determines, to a large extent, association energy with many serine proteinases. To test the agreement of phage display selection with the existing thermodynamic data, a small library of all 20 P1 mutants of basic pancreatic trypsin inhibitor (BPTI) was created, fused to protein III, and displayed on the surface of M13 phage. The wild type of displayed inhibitor monovalently and strongly inhibited trypsin with an association constant of Ka = 3 x 10(11) M(-1). The library was applied to select BPTI variants active against five serine proteinases of different specificity (bovine trypsin and chymotrypsin, human leukocyte and porcine pancreatic elastases, human azurocidin). The results of enrichment with four proteinases agreed well with the available thermodynamic data. In the case of azurocidin, the phage display selection allowed determination of the P1 specificity of this protein with the following frequencies for selected P1 variants: 43% Lys, 36% Leu, 7% Met, 7% Thr, 7% Gln.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tyrosine Sulfation of Human Trypsin Steers S2’ Subsite Selectivity towards Basic Amino Acids

Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1'-P4' in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight bindin...

متن کامل

Puzzling Peptides from a Phage Display Library

The commercial availability of random peptide libraries displayed on the M13 phage is increasing their use forstudies on epitope identification, enzyme inhibitors, receptor ligands, etc. In this study two experimentswhere planned for selection of peptides. First with sheep antibodies, the positive selector was IgG, preparedon Protein G column from a pool of 11 sheeps immunized...

متن کامل

Phage display selection can differentiate insecticidal activity of soybean cystatins.

Plant cysteine proteinase inhibitors (phytocystatins) have been implicated as defensive molecules against Coleopteran and Hemipteran insect pests. Two soybean cystatins, soyacystatin N (scN) and soyacystatin L (scL), have 70% sequence identity but scN is a much more potent inhibitor of papain, vicilin peptidohydrolase and insect gut proteinases. When these cystatins were displayed on phage part...

متن کامل

Roles of the P1, P2, and P3 residues in determining inhibitory specificity of kallistatin toward human tissue kallikrein.

Kallistatin is a serpin with a unique P1 Phe, which confers an excellent inhibitory specificity toward tissue kallikrein. In this study, we investigated the P3-P2-P1 residues (residues 386-388) of human kallistatin in determining inhibitory specificity toward human tissue kallikrein by site-directed mutagenesis and molecular modeling. Human kallistatin mutants with 19 different amino acid subst...

متن کامل

Implantation Serine Proteinase 1 Exhibits Mixed Substrate Specificity that Silences Signaling via Proteinase-Activated Receptors

Implantation S1 family serine proteinases (ISPs) are tryptases involved in embryo hatching and uterine implantation in the mouse. The two different ISP proteins (ISP1 and ISP2) have been detected in both pre- and post-implantation embryo tissue. To date, native ISP obtained from uterus and blastocyst tissues has been isolated only as an active hetero-dimer that exhibits trypsin-like substrate s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological chemistry

دوره 380 1  شماره 

صفحات  -

تاریخ انتشار 1999